Course Schedule
Please click here for a printable list of the current semester’s course offerings
INFO 521 – Introduction to Machine Learning
GIDP: Cognitive Science (COGS) · GIDP: Global Change (GC) · GIDP: Neuroscience (NRSC) · GIDP: Second Lang. Acquisition & Teaching (SLAT) · GIDP: Statistics and Data Science (STATD)
Machine learning describes the development of algorithms which can modify their internal parameters (i.e., "learn") to recognize patterns and make decisions based on example data. These examples can be provided by a human, or they can be gathered automatically as part of the learning algorithm itself. This course will introduce the fundamentals of machine learning, will describe how to implement several practical methods for pattern recognition, feature selection, clustering, and decision making for reward maximization, and will provide a foundation for the development of new machine learning algorithms.
Machine learning describes the development of algorithms which can modify their internal parameters (i.e., "learn") to recognize patterns and make decisions based on example data. These examples can be provided by a human, or they can be gathered automatically as part of the learning algorithm itself. This course will introduce the fundamentals of machine learning, will describe how to implement several practical methods for pattern recognition, feature selection, clustering, and decision making for reward maximization, and will provide a foundation for the development of new machine learning algorithms.
- +
- Section: 002
- Instructor: Pyarelal, Adarsh
- Days: MoWe
- Time: 12:30 PM - 01:45 PM
- Dates: Aug 25 - Dec 10
- Status: Open
- Enrollment: 0 / 50
- +
- Section: 102
- Instructor: Lu, Xuan
- Days:
- Time:
- Dates: Aug 25 - Dec 10
- Status: Open
- Enrollment: 0 / 60
INFO 521 – Introduction to Machine Learning
GIDP: Cognitive Science (COGS) · GIDP: Global Change (GC) · GIDP: Neuroscience (NRSC) · GIDP: Second Lang. Acquisition & Teaching (SLAT) · GIDP: Statistics and Data Science (STATD)
Machine learning describes the development of algorithms which can modify their internal parameters (i.e., "learn") to recognize patterns and make decisions based on example data. These examples can be provided by a human, or they can be gathered automatically as part of the learning algorithm itself. This course will introduce the fundamentals of machine learning, will describe how to implement several practical methods for pattern recognition, feature selection, clustering, and decision making for reward maximization, and will provide a foundation for the development of new machine learning algorithms.
Machine learning describes the development of algorithms which can modify their internal parameters (i.e., "learn") to recognize patterns and make decisions based on example data. These examples can be provided by a human, or they can be gathered automatically as part of the learning algorithm itself. This course will introduce the fundamentals of machine learning, will describe how to implement several practical methods for pattern recognition, feature selection, clustering, and decision making for reward maximization, and will provide a foundation for the development of new machine learning algorithms.
- +
- Section: 401
- Instructor: Bates, Jennifer Michelle
- Days:
- Time:
- Dates: Jul 7 - Aug 22
- Status: Open
- Enrollment: 0 / 120
INFO 521 – Introduction to Machine Learning
GIDP: Cognitive Science (COGS) · GIDP: Global Change (GC) · GIDP: Neuroscience (NRSC) · GIDP: Second Lang. Acquisition & Teaching (SLAT) · GIDP: Statistics and Data Science (STATD)
Machine learning describes the development of algorithms which can modify their internal parameters (i.e., "learn") to recognize patterns and make decisions based on example data. These examples can be provided by a human, or they can be gathered automatically as part of the learning algorithm itself. This course will introduce the fundamentals of machine learning, will describe how to implement several practical methods for pattern recognition, feature selection, clustering, and decision making for reward maximization, and will provide a foundation for the development of new machine learning algorithms.
Machine learning describes the development of algorithms which can modify their internal parameters (i.e., "learn") to recognize patterns and make decisions based on example data. These examples can be provided by a human, or they can be gathered automatically as part of the learning algorithm itself. This course will introduce the fundamentals of machine learning, will describe how to implement several practical methods for pattern recognition, feature selection, clustering, and decision making for reward maximization, and will provide a foundation for the development of new machine learning algorithms.
- +
- Section: 002
- Instructor: Pyarelal, Adarsh
- Days: MoWe
- Time: 12:30 PM - 01:45 PM
- Dates: Jan 15 - May 7
- Status: Open
- Enrollment: 9 / 40
- +
- Section: 101
- Instructor: Lu, Xuan
- Days:
- Time:
- Dates: Jan 15 - May 7
- Status: Open
- Enrollment: 42 / 50
- +
- Section: 201
- Instructor: Lu, Xuan
- Days:
- Time:
- Dates: Jan 15 - May 7
- Status: Open
- Enrollment: 42 / 50
- +
- Section: 401
- Instructor: unassigned
- Days:
- Time:
- Dates: Jan 15 - Mar 21
- Status: Open
- Enrollment: 79 / 120